
Horacio Gonzalez
2025-11-07

Rewriting the Role
Developers in the Age of LLMs

Who are we?
Introducing myself and

introducing Clever Cloud

Horacio Gonzalez

@LostInBrittany

Spaniard Lost in Brittany
Old(ish) Developer

Clever Cloud
From Code to Product

Rewriting the Role
Developers in the Age of LLMs

What are we going to talk about?

● Programmers Are Always Doomed…
Until they are not

● When Tools Learn, So Must We
Deskilling or reskilling in the age of AI

● The Developer's New Workflow
Co-authoring with the machine

● The Developer's Journey
Growing up with smarter tools

● Teaching the Next Generation
How do we teach programming when the computer can already code?

● Differently Human
The future of software development

Programmers Are Always Doomed…
Until They’re Not

The first program language*: Fortran
It will make make programmers obsolete!

 * Grace Murray Hopper invented the concept and tools that made high-level
 programming possible, Fortran was the first full implementation of that idea

From machine code:

Low-level: registers, opcodes, memory addresses

To Fortran:

Low-level: registers, opcodes, memory addresses

The first program language*: Fortran

0001 0000 0000 10101 ; LOAD constant 21 into register A
0001 0001 0000 00010 ; LOAD constant 2 into register B
0010 0000 0001 00010 ; MULTIPLY A × B → result in register A
0011 0000 0000 10000 ; STORE result (42) into memory address 16

INTEGER A, B, C
A = 21
B = 2
C = A * B
PRINT *, C
END

The first program language: Fortran

Source: IBM history of Fortran
https://www.ibm.com/history/fortran

https://www.ibm.com/history/fortran

From punched cards to keyboards
Programmers won't think before coding anymore!

From punched cards to keyboards

From punched cards to keyboards

Sources:
● Wikipedia history of Punched Cards

https://en.wikipedia.org/wiki/Punched_card

● Punching cards was a clerical job
https://www.computerhistory.org/revolution/punched-cards/2/4

https://en.wikipedia.org/wiki/Punched_card
https://www.computerhistory.org/revolution/punched-cards/2/4

From Code to Models: the Automation Dream
Business users will be able to build applications

without programming

From Code to Models: the Automation Dream

Some sources:
● Software Engineering in the Twenty-First Century (M. R. Lowry, 1992)

https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1012/930

● The Last One
https://en.wikipedia.org/wiki/The_Last_One_%28software%29

https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1012/930
https://en.wikipedia.org/wiki/The_Last_One_%28software%29

Write once, run anywhere: Java
Anyone can be a programmer now!

Write once, run anywhere: Java

Some sources:
https://www.joelonsoftware.com/2005/12/29/the-perils-of-javaschools-2/

https://nedbatchelder.com/blog/200601/joel_spolsky_is_a_crotchety_old_man.html

https://www.joelonsoftware.com/2005/12/29/the-perils-of-javaschools-2/
https://nedbatchelder.com/blog/200601/joel_spolsky_is_a_crotchety_old_man.html

Low-Code / No-Code
Now anyone can be a developer

Low-Code / No-Code

Low-Code / No-Code

Some sources:
● The Rise of the Citizen Developer

https://www.researchgate.net/publication/358383894_Rise_of_the_Citizen_Deve
loper

● Will low-code/no-code platforms replace traditional developers?
https://www.productmarketingalliance.com/developer-marketing/will-low-code-
no-code-development-platforms-replace-traditional-developers/?utm_source=ch
atgpt.com

● Will the No Code Movement Change Software Development?
https://www.quandarycg.com/no-code-movement-software-development-changes/

https://www.researchgate.net/publication/358383894_Rise_of_the_Citizen_Developer
https://www.researchgate.net/publication/358383894_Rise_of_the_Citizen_Developer
https://www.productmarketingalliance.com/developer-marketing/will-low-code-no-code-development-platforms-replace-traditional-developers/?utm_source=chatgpt.com
https://www.productmarketingalliance.com/developer-marketing/will-low-code-no-code-development-platforms-replace-traditional-developers/?utm_source=chatgpt.com
https://www.productmarketingalliance.com/developer-marketing/will-low-code-no-code-development-platforms-replace-traditional-developers/?utm_source=chatgpt.com
https://www.quandarycg.com/no-code-movement-software-development-changes/

What Every Abstraction Wave
Taught Us

Yet another apocalyptic change, it must be Monday…

What Every Abstraction Wave Taught Us

● Each new layer of abstraction triggers fear of obsolescence.

● Every time, developers adapt… and redefine the craft.

● Automation doesn’t eliminate skill; it changes where it lives.

● From bit-twiddling to system-thinking, we keep moving up the stack.

What Every Abstraction Wave Taught Us

We don’t lose craft,
we move it up a level

When Tools Learn, So Must We
Deskilling or Reskilling in the Age of AI

When Tools Learn, So Must We
Are we being deskilled — or are we reskilling?

I can code, refactor,
test, commit, make PRs…

What's left for me?

The Deskilling Fear
If AI can code, what’s left for developers?

https://www.theatlantic.com/ideas/archive/2025/10/ai-deskilling-automation-tec
hnology/684669/

https://www.theatlantic.com/ideas/archive/2025/10/ai-deskilling-automation-technology/684669/
https://www.theatlantic.com/ideas/archive/2025/10/ai-deskilling-automation-technology/684669/

Is software development being deskilled?
A very connoted word

In economics, deskilling is the process
by which skilled labor within an
industry or economy is eliminated by
the introduction of technologies
operated by semi- or unskilled
workers.

Automation doesn’t deskill people
It shifts expertise to places the tools can’t reach

From Repetition to Reasoning
Automation shifts the skill, not the value

What We’re Really Learning Now
New literacies for developers

Framing
Turning intent into
precise prompts

Critical Reading
Validating AI output

Debugging
abstractions
Tracing errors you
didn’t write

Ethics & Trust
Knowing when not to
automate

From “Lost Skills” to New Ones
We’re not forgetting, we’re evolving

Every machine embodies a social
decision, what gets automated,
and what remains a skill

“We’ll forget how to code”

The danger isn’t forgetting how
to write a loop, it’s forgetting
how to think about one

The Craft Endures
Still human, just differently skilled

When tools learn, so must we
Automation doesn’t end craftsmanship — it redefines it

The Developer’s New Workflow
Co-Authoring with the Machine

From syntax recall to intent articulation
The bottleneck moves from syntax to semantics

How do I write
this function?

What should this
 function accomplish?

You’re no longer coding for the machine;
you’re negotiating with it

From implementation to orchestration
You used to be a builder, now you’re a conductor

A conductor doesn’t play every instrument;
they ensure harmony and timing

From writing code to curating systems
Deciding which lines matter, and which ones can be delegated.

Choosing what to keep, refine, or replace

Pitfalls
Overtrust, hallucination, loss of mental model

The risk isn’t that the model will write bad code,
it’s that we’ll stop understanding the code it writes

This is the way,
trust me

The new rhythm of collaboration
Partnering with an LLM

Coding with an LLM is pair programming with a young colleague
who’s brilliant, tireless, and occasionally delusional

The best developers I know don’t treat the
model as magic, they treat it as a junior
teammate who learns through feedbackAsk clearly

Review ruthlessly

Teach continuously

In conclusion
Co-Authoring with the Machine

We used to talk about “writing software.”
Now we’re talking about “conducting software.”

The tools play the instruments, but we still write the
score

The Developer’s Journey
Growing Up with Smarter Tools

The vanishing entry-level
Setting the stage

If the easy problems are gone,
where do new developers cut their teeth?

I do the scaffolding, the
repetitive work, the easy
bug fixing, even the
commits and PRs

So how can I learn and get
better if you do all the easy
tasks?

Rethinking learning
Juniors now must learn through AI, not before AI.

Tri-programming
Junior, AI and senior

Teaching
Prompt crafting, critical
code reading and
debugging AI output

Guided co-creation
New onboarding pattern
instead of rote
implementation

Redefining seniority
What means being senior in a world with AI?

Senior ≠ years of
syntax mastery

Senior = common sense,
system and domain understanding,

empathy and leadership

Seniority is shifting from knowing the answers
to knowing which questions matter

Mentorship in this new world
A two-ways road

Conclusion
The map changed, but not the destination

Still learning to talk to machines, the language just evolved

Teaching the Next Generation
How do we teach programming when the computer can already code?

The broken model
We’ve been teaching how to code, not how to think about code

Traditional model
Syntax drills &
algorithmic exercises

AI assistants
Students can “solve”
everything instantly

Grading output
Everyone can cheat… or
worse, learn nothing

Shifting from execution to understanding
Let's teach less syntax, more synthesis

Write a
function
that…

Explain what
this function
does and why

Change focus
Reasoning, mental
models, system design
and debugging

Evaluate process
Oral defense, live
reasoning, code
walkthroughs

The role of friction
We must design friction on purpose

Constraint-based learning forces
students to think.

● debug broken AI code
● critique different answers
● give incomplete requirements

The struggle is where
understanding grows.

Teaching collaboration with AI
Students need to learn to use LLMs well, not to hide them

Prompt design
Describe intent precisely

Verification
Test and analyze the output

Reflection
Document what was learned
and what went wrong

Assessment reimagined
How can we evaluate?

Plagiarism detection is meaningless

Grade something else:
● Process
● Reflection
● Reasoning

When understanding becomes visible,
cheating becomes pointless

Re-tooling educators
Teachers need their own upskilling

We have to learn what these tools do,
where they fail, and how to guide
students through them

● Experimenting
● Sharing open lesson plans
● Accepting that “teaching AI-era

programming” is itself a new
discipline

Conclusion

We don’t teach people to out-code the machine.
We teach them to understand, guide, and question it.

Differently Human
The Future of Software Development

Differently Human
The future of software development

Every abstraction hides a machine…
and reveals a human choice.

The Pattern Repeats
Every revolution ends in rediscovery

Assembly → Fortran → Java →
Cloud → LLMs
Each looked like an ending
None erased us; all redefined us

The next wave will do the same

What Machines Still Can’t Do
Computation isn’t comprehension

Intent Context

Empathy Ethics

LLMs manipulate form, not meaning
We supply the “why,” the value judgment, the connection to real people

The New Developer Archetype
From Coder to Composer

● Orchestrates human +
machine collaboration

● Balances automation with
accountability

● Designs systems and
stories

The Human Loop
Keep the Human in the Loop

Our job: preserve understanding inside automated pipelines
Automation without comprehension is abdication

Conclusion
Not Less Human — Differently Human

The future of software development isn’t less human.
It’s just differently human.

Our craft remains — it just moves up a level.

Thank you all!

That's all, folks!

